If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+9k=36
We move all terms to the left:
k2+9k-(36)=0
We add all the numbers together, and all the variables
k^2+9k-36=0
a = 1; b = 9; c = -36;
Δ = b2-4ac
Δ = 92-4·1·(-36)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-15}{2*1}=\frac{-24}{2} =-12 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+15}{2*1}=\frac{6}{2} =3 $
| 2(2x+1)=28+2(x+6) | | -(7y+3)-(6y-7)=0 | | p2+15p=0 | | 18/x+4+0.8x=0 | | 3213213213123213x=43455094350934985894308x+1111111111111111111 | | -6k-3=83 | | 3u+12=42 | | -5+18h=6(3h-2)+7 | | 7x-74=4x-11 | | 72=10(-7-9e)+90e | | -9x1=80 | | 2x+4=7-4x | | 7/2x+1/2x=3 | | -69=-8x-5 | | 2x+4=10-3 | | y/5-5=13 | | 4(b-6)=-24+4b | | 9x-25=49 | | 1/4(5x+16/3)+-2/3(3/4x+1/2)=5 | | 12x+7=-7 | | 21(e+5)-42=7(3e+9) | | 55x+54=21 | | 1/4(5x+16/3)+-2/3(3/4x+1/2)=-5 | | 1/4(5x+16/3)=-2/3(3/4X+1/2)-5 | | 4x+1=9x+1 | | -3m+(-18)=-51 | | 9=r-10 | | 7x=26x-6x | | 7-2b=8+3b | | -3x^2+48x-180=0 | | -3x^2+72x-420=0 | | 2^4x-1=x+7 |