If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-10k-56=0
We add all the numbers together, and all the variables
k^2-10k-56=0
a = 1; b = -10; c = -56;
Δ = b2-4ac
Δ = -102-4·1·(-56)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-18}{2*1}=\frac{-8}{2} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+18}{2*1}=\frac{28}{2} =14 $
| 9(w-7)=4w-13 | | 4500=10x+.75 | | 2.4*x=10 | | -9-9u=-7u+9 | | 4500=10x^2+.75x | | -h=-8-2h | | 2a=345-(a-15) | | 2s+9=-7-6s | | y/8=7/3 | | 6x+20=400 | | -4(-5y+3)-y=3(y-7)-3 | | 5-9m=-10m | | -3c=7c+10 | | 2f+9=5f−21 | | 3.6=3.2*x | | -6k-8=-4k | | b=2(3)-21 | | 5k+-2k=16-7 | | 19=4t+3 | | 5=f/3+1 | | E=7^2x7^50+49+42(7^60/7^7) | | 3(y+5)-2y=12 | | P=70n-1000 | | 13/40=m/1000 | | 2n=3n^2+6n+12 | | 2x-9=2x3x5+23 | | (w+14)(4)=(4w+6)(3) | | 4c-19c-(-1)=16 | | 7x-4x-16+20=25 | | 6+4x=5(−x+6)−69 | | 4^x+2=16^x-3 | | 6y+24(1)=42 |