If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-10k=-20
We move all terms to the left:
k2-10k-(-20)=0
We add all the numbers together, and all the variables
k^2-10k+20=0
a = 1; b = -10; c = +20;
Δ = b2-4ac
Δ = -102-4·1·20
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{5}}{2*1}=\frac{10-2\sqrt{5}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{5}}{2*1}=\frac{10+2\sqrt{5}}{2} $
| 12x^2-120x-200=0 | | 5/2=-d2/4 | | 2y=-3+30 | | k+49=94 | | (x-23)=57 | | 2/3(10x+5)=−14 | | s-36=82 | | 7d+10=31 | | 4/12=-2b/13+6b/26 | | 1/3x−6=15 | | -4r=(-18.4) | | m−2=24 | | 14=13.7-3x | | 5x2-49=0 | | 34=2(7x) | | (5.6x10^5)÷=(6.4x10^2) | | 5x^2+20=145 | | 5x^+20=145 | | 36.3÷y=12.1;2,3,4 | | d/(-29)=25 | | 530=x10 | | 5x-2=7+2× | | 154×x=-22 | | p-4=6/p= | | 7/3=g+2/3 | | p-4=6/p=10 | | 3x+3.46=28 | | 7x112=8+3x1 | | 2x^2+16-912=0 | | t3=13 | | 5c-33=9-3 | | 4x+12-6x=6 |