If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-12k+11=0
We add all the numbers together, and all the variables
k^2-12k+11=0
a = 1; b = -12; c = +11;
Δ = b2-4ac
Δ = -122-4·1·11
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-10}{2*1}=\frac{2}{2} =1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+10}{2*1}=\frac{22}{2} =11 $
| -19-18u+3u=-18u+20 | | 12x+32=8x-12 | | 2c+22=4(c+3) | | x.2(x-4)=4x+3x+6 | | 14-14v=-12v-18 | | 5x+x-2=5 | | -9q-2=-10q | | 8x+3=-2x-17 | | -4u-9=10+7+9u | | (4x+4)+12x=180 | | -6v=-9v-9 | | 10m+1=-2m+1 | | 10m+1=-2m | | -7=2x-7* | | x2-9x-4.75=0 | | -7x+2(5x+13)=56 | | -6+g=9-2g | | -343=-7(-7x+7) | | 78-5x=42 | | 7z=10z-6 | | -2u-8=-3u | | -12+3k+6=-28 | | 7y=-3y | | 78-5x=48 | | 0.75x=1.75x | | 0.06x-1=-3 | | 6x+38=8x-6 | | -84=6x-6(2x+8) | | 3(6x-5)=105 | | 4x+2=3(3-4×) | | -7x-4+6=-6x+5 | | 24x-13x=+2x |