If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-196=0
We add all the numbers together, and all the variables
k^2-196=0
a = 1; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·1·(-196)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*1}=\frac{-28}{2} =-14 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*1}=\frac{28}{2} =14 $
| 9r^2+6r^2=90^2 | | 0.2(y+10)=-25 | | -12-5(6+2m)=18 | | 9r*2+6r*2=90*2 | | N4=3n= | | p + -3.8 = 9.1 | | 90=(2x+16)+(3x+1) | | 9r*2+6r*2=C*2 | | 3n=21.N= | | 1/4=p/8 | | 2(9x-8)=-34 | | 6(6z+7)=175 | | x+13+2x-1+2x+6+2x+12+2x-17+3x-4+3x-10+4x=360 | | 4x/x+5-1/x+1=4 | | 2m+4(3+m=6m+12 | | 12m+8-5+2+m=(m+1) | | 132+2x+3=180 | | 3/6=10/h | | (6x+4)+(7x-6)=180 | | 6y÷1=4y÷7 | | -2(x+5)-4x=-4x-6 | | 7x^2+18x+5=0 | | 6y/1=4y/7 | | −32 a=−8 | | 3^4x=5^x-1 | | 2k =11 | | (6z+7)=10z+45 | | 2x+10-3=5x-3 | | 3/2x+5=3(7x) | | 9(b7)=72 | | 4(x-6)=8x+10-2x | | 3/2x+5=5x-2(x+7) |