If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-4k-45=0
We add all the numbers together, and all the variables
k^2-4k-45=0
a = 1; b = -4; c = -45;
Δ = b2-4ac
Δ = -42-4·1·(-45)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-14}{2*1}=\frac{-10}{2} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+14}{2*1}=\frac{18}{2} =9 $
| 1x1=0 | | 1x-0=0 | | -44=3x+0 | | 5r+7(8+7r)=-268 | | 6v^2-12v-100=0 | | 12t-4=3t+8 | | 12x-3-5(3x)=5.4 | | 1/2d+13=20 | | -2-3(1-3p)=-32 | | Y=P(.85)^t | | 5/4x=2.5x+6 | | -7n-24=-129 | | 85+x=685 | | A=1/2b8 | | 0=8-n/5 | | 0=8-n/50=8-n/5 | | -2(5+6c)+16=-9c | | 2x-6+3x+21=180 | | 2x-14=x-1 | | x2+32=0 | | 9(4x-2)=6(6x-9) | | 10m=48+2m | | 18-x=37 | | -2-3(2-3v)=-35 | | 3/5(-8+s)=9 | | 492000+8a/100+10a/100=a=492000+8a/100+10a/100=a | | 3x^2-1500x+20000=0 | | 492000+8a/100+10a/100=a492000+8a/100+10a/100=a | | A1=6n+2 | | 50+x+33+x-15+2x=360 | | 12w-16=4w | | 10m=48-2m |