If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2=-6k
We move all terms to the left:
k2-(-6k)=0
We add all the numbers together, and all the variables
k^2-(-6k)=0
We get rid of parentheses
k^2+6k=0
a = 1; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·1·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*1}=\frac{-12}{2} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*1}=\frac{0}{2} =0 $
| -9h=11-8h | | 9g=15/10 | | 14=7(r+2) | | 19.2-4.1k+7.7k=18.54+3k | | 5^x-9=6x+1 | | 418.56=160+1.01x | | -v-18=-3v | | 7x+2.5=10x-5 | | m+12=-15 | | x2+7x+49=-11 | | 19-u+19=-19+2u | | -17q+2=-16q+12 | | 2x+28+x+24=-12 | | 17.5=1/2(7)(h) | | 4x2-16+12=0 | | -8v+8=2-7v | | v=350 | | -3s-1=3-s+6 | | 7+3(r+1)=8+3r | | -6-7m=-5m | | 30−2x*x=−6 | | -6-7m=-5 | | x2+64=16x | | -4(7a+3)=-38-2a | | 2x-80=-160 | | -4,5x=27 | | 9j+8=j-8 | | -5+2t=-10 | | 10m+7=9m | | -6-7g=4-6g | | 2n=-6+n | | k8k=8 |