k2=52

Simple and best practice solution for k2=52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k2=52 equation:



k2=52
We move all terms to the left:
k2-(52)=0
We add all the numbers together, and all the variables
k^2-52=0
a = 1; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·1·(-52)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13}}{2*1}=\frac{0-4\sqrt{13}}{2} =-\frac{4\sqrt{13}}{2} =-2\sqrt{13} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13}}{2*1}=\frac{0+4\sqrt{13}}{2} =\frac{4\sqrt{13}}{2} =2\sqrt{13} $

See similar equations:

| d+3.8=8.5 | | 20^-100x=0 | | 180=121+11x | | 12=0.5m | | 12+0.3x=0.7(x+20) | | T=24-1.5m | | 9(j+6)=99 | | 8+9y=-17 | | C(h)=2h+2 | | 3/4c=-2 | | 6(p+6)=72 | | x+56=454 | | 38=2y-6 | | 6m+2m=1 | | -8n=4n+48 | | 5-3-x=1 | | 7d​+8=10 | | 4y-9=2y-3 | | 58=w−42 | | 38+2y-6=180 | | w+–158=154 | | -8=4n+48 | | C(h)=2h+35 | | b+3.2=56.7 | | Bx4=32 | | 12+-4d=20 | | 3y+14=104 | | 2n+33=79 | | ⅓x+2= ⅔x–6 | | 5f+9=14 | | 121+11x=180 | | 6x*8=40 |

Equations solver categories