If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k=48/k-16
We move all terms to the left:
k-(48/k-16)=0
Domain of the equation: k-16)!=0We get rid of parentheses
k∈R
k-48/k+16=0
We multiply all the terms by the denominator
k*k+16*k-48=0
We add all the numbers together, and all the variables
16k+k*k-48=0
Wy multiply elements
k^2+16k-48=0
a = 1; b = 16; c = -48;
Δ = b2-4ac
Δ = 162-4·1·(-48)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{7}}{2*1}=\frac{-16-8\sqrt{7}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{7}}{2*1}=\frac{-16+8\sqrt{7}}{2} $
| 42=-2d+6,d | | 5(x+3)=5(2x-5) | | x+(32+29)+(x+56)=135 | | 4x2-10x=0 | | 7/x=35/25 | | 25/2=x/26 | | 7x=5x18 | | 3/x-1+2/x=4 | | -5/2s=-1 | | (3x1)+(6÷2)–1= | | (-10x+58)°=(6x+41)° | | 2/x+2+3/x+3=2 | | -17=-x/2 | | 2x+6-3x-3=8 | | (2/5x+3)=+(1/5x-1) | | 1+2 | | (2/5x+3)=+(1/6 | | 1+2 | | 0.6156614753=x/204 | | 5+4x=2x+10 | | x=3642-x | | 0.6156614753=x/17 | | X=3642-2x | | 1+2 | | x=3642-3x | | x+(x+7)=5 | | X=3x-3642 | | 2x-9=3x-13 | | 0.4663076582=x/40 | | X/(x-3)/4+(x-1)/5-(x-2)/3=1 | | 181-2c=755 | | 3π+2β=x |