ln(x+2)-ln(x-7)=ln(4)

Simple and best practice solution for ln(x+2)-ln(x-7)=ln(4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(x+2)-ln(x-7)=ln(4) equation:


Simplifying
ln(x + 2) + -1ln(x + -7) = ln(4)

Reorder the terms:
ln(2 + x) + -1ln(x + -7) = ln(4)
(2 * ln + x * ln) + -1ln(x + -7) = ln(4)
(2ln + lnx) + -1ln(x + -7) = ln(4)

Reorder the terms:
2ln + lnx + -1ln(-7 + x) = ln(4)
2ln + lnx + (-7 * -1ln + x * -1ln) = ln(4)
2ln + lnx + (7ln + -1lnx) = ln(4)

Reorder the terms:
2ln + 7ln + lnx + -1lnx = ln(4)

Combine like terms: 2ln + 7ln = 9ln
9ln + lnx + -1lnx = ln(4)

Combine like terms: lnx + -1lnx = 0
9ln + 0 = ln(4)
9ln = ln(4)

Reorder the terms for easier multiplication:
9ln = 4ln

Solving
9ln = 4ln

Solving for variable 'l'.

Move all terms containing l to the left, all other terms to the right.

Add '-4ln' to each side of the equation.
9ln + -4ln = 4ln + -4ln

Combine like terms: 9ln + -4ln = 5ln
5ln = 4ln + -4ln

Combine like terms: 4ln + -4ln = 0
5ln = 0

Divide each side by '5'.
ln = 0

Simplifying
ln = 0

The solution to this equation could not be determined.

See similar equations:

| Y=-1(3x-1) | | Y=1(x-1) | | 15x^4-120x^2+240=0 | | x+.04x=23750 | | 25+q^2=2q^2 | | u=16+5*14-0.12*14*14 | | x+.04=23750 | | -x+(x-4)=2 | | 95=6x+9 | | 0=x^2+3x-38 | | 8-7(4-w)=10w-(3w-5) | | xy+5x+2y=5 | | 2x-12=8-3x | | a=6x^2*3x^4 | | 3x-1(x+1)=3x-7 | | -2(y+4)+6y=(y-3) | | (W)+(W-4)=32 | | -4(-3w+2)-w=3(w-5)-7 | | 4(5x-6y)-(4x-7y)= | | 18x+15y+8z=0 | | 4(5x-6y)-(4x-9y)= | | -2(-0.75)+3=y | | 5(10*x+3)+3(1-3*x)=0 | | y=x*x+x*x-5 | | x=2+3*4 | | (2z-3)(8+x)=0 | | 84=-4(-6x+3) | | 7*10.35234996-9-y=0 | | 3x+17=4x-19 | | 10.35234996*10.35234996+10.35234996+10.35234996+-5=y | | (x^3)-(3x^2)+8x+1=0 | | 10.35234996*10.35234996+10.35234996+10.35234996-5= |

Equations solver categories