ln(y)+(1/3)*ln(x)=c

Simple and best practice solution for ln(y)+(1/3)*ln(x)=c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(y)+(1/3)*ln(x)=c equation:


D( x )

x <= 0

x <= 0

x in (0:+oo)

ln(y)+(1/3)*ln(x) = c // - c

ln(y)+(1/3)*ln(x)-c = 0

t_2 = ln(x)

t_3 = ln(y)

ln(y)-c+(1/3)*t_2 = 0

t_2/3-c+t_3 = 0

(3*(-c))/3+t_2/3+(3*t_3)/3 = 0

3*(-c)+t_2+3*t_3 = 0

t_2-3*c+3*t_3 = 0

(t_2-3*c+3*t_3)/3 = 0

(t_2-3*c+3*t_3)/3 = 0 // * 3

t_2-3*c+3*t_3 = 0

t_2-3*c+3*t_3 = 0 // - 3*t_3-3*c

t_2 = -(3*t_3-3*c)

t_2 = -(3*ln(y)-3*c)

ln(x) = -(3*ln(y)-3*c)

ln(x) = ln(e^(-(3*ln(y)-3*c)))

x = e^(-(3*ln(y)-3*c))

See similar equations:

| 2X+5=105 | | 4x+6=8x-34 | | 1/4+1/12x=2/3 | | =60x^3-240x^2+240x | | 12x-20x^2=0 | | 8y+7x=8 | | x^3+64=(x+a)(x^2+bx+c) | | 7c=-28 | | y+1=-10/7(x+8) | | -3x+15=x-1 | | 7(t-2)+8t=5(3t+3)-9 | | 3a^3b^3-9a^2b^4=0 | | log(x-2)-log(4-x)=1-log(13-x) | | 8x-12x^2=0 | | 2w^2+5w-44=0 | | 0.3(x+30)+1.5x=90 | | 10x+2y=03x+5y=33 | | 3a^3b^3-9a^2b^4= | | 2x-7=14-5x | | (4x-5)+(9x+2)=(4-6x)-(7x+8) | | 10x+2y=0 | | 5e^3x=19 | | 3+7p-2=9p+26-7p | | 3x^2-4xy+7y^2=13 | | -5(-8a-6)-(-4a+12)-6(2a-9)= | | x^3+2x^2-8x-48=0 | | x^3-2x^2-8x-48=0 | | 3/x+12x=0 | | 3a+2b=-2 | | -5x+9x=3+17 | | 6/2x=-2 | | 6-2xy=-2 |

Equations solver categories