m(2)=3-m(2)

Simple and best practice solution for m(2)=3-m(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for m(2)=3-m(2) equation:



m(2)=3-m(2)
We move all terms to the left:
m(2)-(3-m(2))=0
We add all the numbers together, and all the variables
-(-1m^2+3)+m2=0
We add all the numbers together, and all the variables
m^2-(-1m^2+3)=0
We get rid of parentheses
m^2+1m^2-3=0
We add all the numbers together, and all the variables
2m^2-3=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $

See similar equations:

| 2/3x+1/2=0.3 | | 17+-12v=23 | | 7/9=y+4 | | (7/9)=y+4 | | 3(x+2.4)=2x | | 60=-16t^2-64t+60 | | 3v+10=6v-5 | | 5x+5+3x-2=54 | | 1000(x-2)=75,000 | | 6(x−7.4)=6.6 | | 1/3x+2=3/4x-3 | | 8x+2x=9x-2 | | 1/3x+2=3/4-3 | | -4(1+6x)=188 | | 4x+1/2=(60)112.5 | | 4^x-8(2^x)+15=0 | | 10/3x-5/6=-2/3 | | -1/4+v=3/5 | | (9x^2)-3x=1 | | -7u=14/5 | | q^2-5q-6=0 | | 6a+3/2=2a-3/4 | | 9s^2+42+49=0 | | 24x=5736 | | K=5(3.14)p | | 0=k^2-14k+13 | | 3{w+6}=42 | | (-2/5)u=-6 | | (1-z)(2z-3)=0 | | z/5-1/5=z/6 | | (-3u/8)=-9 | | k^2-14k+13=0 |

Equations solver categories