If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m(m+4)=16
We move all terms to the left:
m(m+4)-(16)=0
We multiply parentheses
m^2+4m-16=0
a = 1; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·1·(-16)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*1}=\frac{-4-4\sqrt{5}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*1}=\frac{-4+4\sqrt{5}}{2} $
| 4x-3.9x-4.73=x-1.4 | | 8x+3=50+3x | | 2u+9=5u | | 5.x+1/2=31/2 | | 6+6r=24 | | 5(k-2)-(8k=-34 | | 32=6w–16 | | (4^x)(2)=(3^x)(243) | | 10x=5=7x=11 | | d+16=23 | | 1.3n-0.48=-2.3+2n | | 8.8x+2500=77.44+50x | | 27=-4z-5z | | 3x–6=−2x+9 | | 52=n÷3 | | (20+x)(40+x)=1056 | | 0,01x+1=2 | | X-3(-3+8x)=-106 | | 3x–6=−2x+9x= | | -5(x+3)+2x=-(5x-6)+1 | | 10y(2-y)=7 | | 2+5d-21=-31 | | 35-2t=3t | | -3(5r+2)=-6(4r-2) | | 3(2a+5=27 | | 9+2x=1-4x | | (40-2x)(22-2x)x=1000 | | 256=60x+x^2 | | 5m+2=-m+6(m-4) | | t+7/5=-4 | | 3a+6a-7+2=24 | | -3(-2n+8)=3(-3n-8)-2n |