m1=25,m2=25

Simple and best practice solution for m1=25,m2=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for m1=25,m2=25 equation:



m1=25.m^2=25
We move all terms to the left:
m1-(25.m^2)=0
We add all the numbers together, and all the variables
m-(25.m^2)=0
We get rid of parentheses
-25.m^2+m=0
We add all the numbers together, and all the variables
-25m^2+m=0
a = -25; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-25)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-25}=\frac{-2}{-50} =1/25 $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-25}=\frac{0}{-50} =0 $

See similar equations:

| Y=-x²+3x-5 | | 5^(5x+2)=45 | | y+7=37-17 | | 4x+7=-x+14 | | 7x-3(2x+9)=6x+3 | | 5(x+7)=-3 | | 8(7a+4)=256 | | x+15+26x-26=5x+7 | | 12x+3(x-2)=54 | | 5x+196=14-15x | | 2a-6=5(6+4a) | | 5x+196=15x-14 | | 3s(s-2)=28 | | 2×+13y=11 | | X=(3x-23)(2x+37) | | 0.6(3+m)=0.8(4-m | | 36+3.50=4.25x | | 7t-6=3t-30 | | k+523.89=812.57 | | 3x+6+3x-28=180 | | 16=5x-7x-8 | | 6x-6=5x-6 | | 3|7w+15|=–6w | | 3|7w+15|=–6 | | F(x)=x2-49 | | 3+4x=9x+13= | | 2/3(4u+6)-2=10 | | X+(0.4)x=24 | | 3x-4=7x-6 | | −3x+5=23 | | 2x+15=43-5x= | | 7x-4=20+3x= |

Equations solver categories