If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+10m-39=0
We add all the numbers together, and all the variables
m^2+10m-39=0
a = 1; b = 10; c = -39;
Δ = b2-4ac
Δ = 102-4·1·(-39)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-16}{2*1}=\frac{-26}{2} =-13 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+16}{2*1}=\frac{6}{2} =3 $
| d=9920/22/7 | | 6b2-12b-90=0 | | (x+21)+(2x+21)=90 | | 9x=11=74 | | 1.4+2/5t=3/15t-0.8 | | 2n2+9n-81=0 | | 4x+3(-13+5x)=18 | | 6/20=60/x | | 4×3(7x-19)=18 | | 6/20=x/60 | | 10(z−9)=-49 | | 4p2+10p-66=0 | | 3x—5=-11 | | 3x2-12x+12=0 | | 2p/9=8/3 | | 6w^2=5w | | R(x)=4x2+5x-6 | | 4(8x-14)=18 | | −2x+9=-4x+27 | | 6x+4(5+23)=12 | | 13.5^4n=95 | | 5k2+4k-28=0 | | -2n+4n-30=0 | | 7x-14=8x+11 | | -9=-11+b•8 | | b2-8b+12=0 | | 3p=17/3 | | b÷5÷6=36 | | 9p-9-p=4p+59 | | X^+5x-1800=0 | | -7x+-42+46=7-8x | | 9n+68=7n-2(n-2 |