If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+19m+18=0
We add all the numbers together, and all the variables
m^2+19m+18=0
a = 1; b = 19; c = +18;
Δ = b2-4ac
Δ = 192-4·1·18
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-17}{2*1}=\frac{-36}{2} =-18 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+17}{2*1}=\frac{-2}{2} =-1 $
| 7x+31=80* | | 2a–7a=15 | | -1.5=-4x+12.3 | | 3f÷12f=8 | | x^{4}-64=0 | | 3(x+5)=20+2 | | (3x+4.5)=36. | | 4^2-x×16^x+2=64 | | e=25*2 | | 8y-43=90 | | 8y-43=115 | | x/8+7=33* | | 6n=2n3 | | x/6-9=21* | | 7x-44+4x+4=90 | | 4x-5=15* | | 2x+8=26* | | 7x+-44+4x+44=39 | | x/2-5=180 | | 5x-6=160 | | (2z+1)=(7z+2) | | 3x-82=180 | | −4(1.75+x)=18* | | 101=5x | | x/12+15=648* | | y+174=200,y= | | g-11=5 | | /6x-12=42* | | 5x+1=8-23 | | x+61+61=18 | | X-15+1=y | | X+15+1=y |