If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+3m=40
We move all terms to the left:
m2+3m-(40)=0
We add all the numbers together, and all the variables
m^2+3m-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| -3x-86=28-9x | | k2+12k=28 | | 2x/5=x/3=5 | | 4n^2+14n+0=0 | | -44+5x=13=2x | | -58+6x=-5x+74 | | -3w+2=-10w30 | | a2-4a=3(a+20) | | 200•x=3000 | | -106+2x=-8x+54 | | 2*7^t=5^2t | | 10(s-4)=-129= | | 3(2x-7)=2(7+3x) | | -81-2x=9x+73 | | 2(x+4)+4(6-x)=0 | | 2(4x+6=2/3(12+18) | | n2+6n=40 | | -176+5x=62-12x | | -10+5x+5=15x-20-5x | | k2+9k=36 | | 2(2x+1)=28+2(x+6) | | -(7y+3)-(6y-7)=0 | | p2+15p=0 | | 18/x+4+0.8x=0 | | 3213213213123213x=43455094350934985894308x+1111111111111111111 | | -6k-3=83 | | 3u+12=42 | | -5+18h=6(3h-2)+7 | | 7x-74=4x-11 | | 72=10(-7-9e)+90e | | -9x1=80 | | 2x+4=7-4x |