If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+49m=0
We add all the numbers together, and all the variables
m^2+49m=0
a = 1; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·1·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*1}=\frac{-98}{2} =-49 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*1}=\frac{0}{2} =0 $
| r/5+8=-11 | | 7b+-20b+-5b=18 | | 7p=p-24 | | 5p/4=20 | | 5+7r3r=(r-4) | | a5=a3+20 | | -3x/5-2=-11 | | -8+2y-4=-8 | | -x/5+2=x/8+3 | | 7w−6w+10w+-8w=3 | | 0+2y-4=-8 | | 6x+10-5=15 | | 26=7(g−9)+1226 | | 2-n÷3=30 | | -4+2y-4=-8 | | 26=7(g−9) | | -3v-5-6v=17 | | 2x+3+5x+27=13x-30 | | 2x-4=4(x-) | | 7y-9-4=-23 | | 50(42-x)=1500 | | 10k+10k=20 | | 2b+4+b=12+b+1 | | x/9-2=-1 | | x/9-2=- | | 7(x-4)+1=2-(x+3) | | 23=2x-10-x | | 4p=5=3 | | 3×5r=-47 | | 4c+20=-c+20 | | 25-x=45 | | T=42-7t |