If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+5m-50=0
We add all the numbers together, and all the variables
m^2+5m-50=0
a = 1; b = 5; c = -50;
Δ = b2-4ac
Δ = 52-4·1·(-50)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15}{2*1}=\frac{-20}{2} =-10 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15}{2*1}=\frac{10}{2} =5 $
| 3t2–23t+14=0 | | -8x-36=4(1-4x) | | -3(2x-7)+4x=1 | | 3(h+1)=3h+9 | | t^2–45t=0 | | t2–45t=0 | | -2=6x+3-5x | | 8+-b/4=5 | | 3(-3t+8)=36+3t | | g^2+21g=0 | | 3y=261 | | (2x+31)+(10x+5)=180 | | 8m+1=8+(7m+6) | | 1997+140.50x=3425+110.75x | | 4(3n-1)=-4n+28 | | 4n-1+3-4=6n+6 | | X2+y2+12y-45=0 | | 0.2(10-5c=5c-16 | | 5p+3=9+4p-4+3 | | 5p+2/3=3p-1/4 | | 8m-1=8m+- | | z2–5z–14=0 | | g2-34g=0 | | z^2–5z–14=0 | | g2–34g=0 | | (3x+4)(7x-8)=0 | | 9k^2+3k+12=0 | | 15y=6y2 | | z^2+22z=0 | | z2+22z=0 | | 0.4r-7=-0.3+2.8 | | −18=6t |