If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+6=10
We move all terms to the left:
m2+6-(10)=0
We add all the numbers together, and all the variables
m^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $
| 9+m÷3=2 | | |2x|=–4 | | 2x^2+1.8x-0.4=0 | | 0.80=(x/450) | | -9+n=-7 | | 9+n=-7 | | 6-6y=3-7y | | 0,2x=0.6(8-x) | | 5x+2x=133 | | 7x-(4x+3)=33 | | 7(5-3y)+11=-122 | | -90=90-9x | | 8(z+5)=7(z-2)+z | | 3x+16=3x+14 | | 5t-8-2t=4t+3t+12 | | 5(n+8)=5-5(n-7) | | (256+x)/4=90 | | 4y-28=32 | | m-37=-5 | | 5=y^2 | | 3/8=x+2/3 | | (9/4)y-12=(1/4)y-4 | | 0,5(7d+4)=7−1,5d | | (4/9)y−12=(4/1)y−4 | | 4.5+1.5q=18-3q | | (4/9)y−12=(4/1)y−4 | | |2x+3|=|7x-5| | | 16-3p=(2/3)p+5 | | 2(a-1)+4(4a)=52 | | (x-7)^2=25 | | 4x-10=5+2 | | 3x-33=21x+21 |