If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+6m=5
We move all terms to the left:
m2+6m-(5)=0
We add all the numbers together, and all the variables
m^2+6m-5=0
a = 1; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{14}}{2*1}=\frac{-6-2\sqrt{14}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{14}}{2*1}=\frac{-6+2\sqrt{14}}{2} $
| 18v+-17v+-14=-2 | | 5/4=n/10 | | -5r+-5r-(-11r)+-1=-13 | | (x(x-1))/x-5=x(x-9) | | 15x-17x=-18 | | (x(x-1))/x-5=x(x-9 | | 9t+8=180 | | 1-3(5b-2)=4(7b+3) | | 15q-9q-5q-1=12 | | 6x+x-5=30 | | 1-3(5b-2)=(7b+3) | | 15u-4u-10u=4 | | 3g-2g-g+4g-2g=8 | | f(4)=54^2-10+4 | | 5.8x-12.7=2x-22.6 | | 3k+-8k+9k-(-19)=15 | | 1/7x+4/9=2/3 | | -m+4(m-3)=-4m+3 | | (2/x-2)+x=x^2 | | 10r=9r+3819r=38 | | 3/4q=5/6 | | 2/3(x-1)=6/7(3x+2) | | 3z-3(z+2)=5(z-3)-6 | | 3x-x=-2x+40 | | 9v-4v+4v+1=19 | | 4y-3=2(3y+2)-3 | | 1=y/3-12 | | 2-3k-+5k=-2+3 | | 6x-3.3=-4x=8.3 | | 6x-3.3=-4=8.3 | | 42/8=x/5 | | 5-1/2(x)=9 |