If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2-8m+4=0
We add all the numbers together, and all the variables
m^2-8m+4=0
a = 1; b = -8; c = +4;
Δ = b2-4ac
Δ = -82-4·1·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{3}}{2*1}=\frac{8-4\sqrt{3}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{3}}{2*1}=\frac{8+4\sqrt{3}}{2} $
| 0=21-19x-12-39+14x-10 | | 13/4m=42/3 | | 3x+8=-9x-4 | | 9^(6+x)=81 | | 9^6+x=81 | | -30=5(x+1)−30=5(x+1)x= | | 2x-1=7x-5 | | 11-4x=13+6x | | 11x-4x=13+6x | | 5(4x-5)=-x-4 | | -3x-24=3(x-4) | | x²=-6x² | | x+2x+4=31 | | 4(2x+1)-4=-40 | | 3x+23=47 | | 3x+23=47¨ | | x=5+5*10 | | 12+-2n=19 | | 10=8(x+9) | | 16x-(5x-22)=0 | | 11370·〖1,02〗^x=12800·〖1,01〗^x | | -4x+28=60 | | 4x-15=3(2x-1) | | 2(x-4)-4=5x+6 | | Y=35+15x | | 14-x=2+45/9 | | 8x-6=5x+16 | | Y=40+12x | | 2x-3÷5+x+4÷2=x | | 5+6x/5=11 | | 5+6x75=11 | | 5+6x7/5=11 |