If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2=1219
We move all terms to the left:
m2-(1219)=0
We add all the numbers together, and all the variables
m^2-1219=0
a = 1; b = 0; c = -1219;
Δ = b2-4ac
Δ = 02-4·1·(-1219)
Δ = 4876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4876}=\sqrt{4*1219}=\sqrt{4}*\sqrt{1219}=2\sqrt{1219}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1219}}{2*1}=\frac{0-2\sqrt{1219}}{2} =-\frac{2\sqrt{1219}}{2} =-\sqrt{1219} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1219}}{2*1}=\frac{0+2\sqrt{1219}}{2} =\frac{2\sqrt{1219}}{2} =\sqrt{1219} $
| 2p+3×=100 | | n×30=0 | | y–27=8+10 | | y/7+48=57 | | 3=169^4^x | | U-32=u-53 | | (3x-31)+(19x-5)=90 | | 13=169^4x | | 80=10(c-91) | | x–13=-5 | | 4y −9=−45 | | 7(y11)2=42 | | 5(2x+3)=20×= | | 6.9x+4.3=-4.7x+8 | | 3x+(4x-2)=61 | | 0.2x(x)=1 | | 4(k+4)2=20 | | 2(1-3x)+4x=6x-8(x-5) | | (3x)+(2-4x)=61 | | 20/90=6/x | | 5(4x+7)=6x | | 23+4v=38 | | 1/3z=-5/6+16z | | 6(2m-5)=6(5-3m) | | (5y-3)°=(2y+42)° | | 5/3x^2=15 | | 4(-2x+3)=-8(x-1.5) | | 6(2m-5)=6(5-3)m | | 44/32-180+7790=y/37 | | x−45=−14 | | 180n^2=3060 | | 4(3^x-1)=28 |