If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2=14
We move all terms to the left:
m2-(14)=0
We add all the numbers together, and all the variables
m^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 6-9n=42 | | x+3(x-1)+4=8 | | 29.03=6g+3.53 | | x+(3x/4)=14 | | 1/2z+7=16=3/5z | | (4x-3)(-2x-4)=0 | | 9w+8=6w+35 | | 7x+1=8x+4(3+2) | | 18/30x=-15/30 | | 45÷n=5 | | 2=7-u | | 4-7r=109 | | X2-4x-45=0 | | 3x-4=14-2x-8 | | 5-d=1 | | 3=2p=9 | | 1/3y=-11/15 | | x/3+3=-21 | | 3^5x=27+2(3^5x+1) | | x+4x+7x=142 | | 3x^2-27x-56=0 | | (x+5)^2=49 | | 2a-4=34 | | b/7+1/2=15 | | 209-24x=19 | | 9=+2p | | 3/5+2=t | | x+4x+3x=142 | | 0.1(2y-4)=0.2(9y-15) | | 9x+6=11x-4 | | 4y-7=35 | | 14x-13=14(x+13) |