m=2;16/2m=

Simple and best practice solution for m=2;16/2m= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for m=2;16/2m= equation:



m=216/2m=
We move all terms to the left:
m-(216/2m)=0
Domain of the equation: 2m)!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
m-(+216/2m)=0
We get rid of parentheses
m-216/2m=0
We multiply all the terms by the denominator
m*2m-216=0
Wy multiply elements
2m^2-216=0
a = 2; b = 0; c = -216;
Δ = b2-4ac
Δ = 02-4·2·(-216)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*2}=\frac{0-24\sqrt{3}}{4} =-\frac{24\sqrt{3}}{4} =-6\sqrt{3} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*2}=\frac{0+24\sqrt{3}}{4} =\frac{24\sqrt{3}}{4} =6\sqrt{3} $

See similar equations:

| 3y+3+8y+6=1108 | | 2/3n ­ 6 = 22 | | 3n(-n+3)=0 | | 9x-30=12x+3 | | -3(3x-6)+9=-9x+27 | | 10=5/2y | | -3n(n+3)=0 | | 1.8+0.6x=0.9x-5.4 | | Y=-4/5x-10 | | x=9;8x+3 | | 4y+3y+9=114 | | 3a+5a=8a-a= | | 2x+9/2=13 | | 2(2x–4)+x=7 | | 9n-3n^2=0 | | 3(4x-1)+2=7x-11. | | -t-18+5+6t=-88 | | 4y+3y+11=180 | | x=3;169-2x4 | | 7a/7=49 | | 1/4(8x-4^2)=0 | | x^2+x^2=12^2 | | 2x+4=6x-20=180 | | -4(8-5x)=8 | | 3(5r-2)=-96 | | 28=14/y | | -3f+3(3f+5)=-81 | | 1/3x^2+21=0 | | 1/2x-x=-24 | | Y=x+7(1) | | 5+(10x)+(8x)=10x | | 9+5a+6a+2=0 |

Equations solver categories