If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(4n+13)=-4
We move all terms to the left:
n(4n+13)-(-4)=0
We add all the numbers together, and all the variables
n(4n+13)+4=0
We multiply parentheses
4n^2+13n+4=0
a = 4; b = 13; c = +4;
Δ = b2-4ac
Δ = 132-4·4·4
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{105}}{2*4}=\frac{-13-\sqrt{105}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{105}}{2*4}=\frac{-13+\sqrt{105}}{8} $
| −15x−21=5x+79 | | 18y−14y+3y−4y+2y=20 | | x2‒9x+15=0 | | 9x+14+63=360 | | 2z-z+z=20 | | 20s-9s-10s+s+s=15 | | -9p-3=-19 | | g÷38=4 | | 40=w+36 | | 3x=30+4x+50/2 | | h^2+25h-21=0 | | k-20=13 | | 169=38-v | | r+70=120 | | -2(5x-3)=2(-3x-15) | | 2(n-3)=5n-27 | | (14y+1)+(9y+2)=141 | | 5x-3+15-x=24 | | 3(x+5)+1=7 | | h^2+25h-6=0 | | 0x+1=4x+2 | | -7+1=-5x+33 | | (5x+3)+(8x+8)+(2x+4)=180 | | {1}{3}(n+1)={1}{6}(3n-5) | | 2n+1=n/4+5n/3+5/3 | | g-28=60 | | 10x+x=90 | | 9r^2-17=9r | | (4x+2)+(8x+9)+(2x+15)=180 | | 2x/5-3x/10=2/6-14/10 | | -d+3d=14 | | 45=f-15 |