n(7n+33)+7(n+1)=

Simple and best practice solution for n(7n+33)+7(n+1)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(7n+33)+7(n+1)= equation:


Simplifying
n(7n + 33) + 7(n + 1) = 0

Reorder the terms:
n(33 + 7n) + 7(n + 1) = 0
(33 * n + 7n * n) + 7(n + 1) = 0
(33n + 7n2) + 7(n + 1) = 0

Reorder the terms:
33n + 7n2 + 7(1 + n) = 0
33n + 7n2 + (1 * 7 + n * 7) = 0
33n + 7n2 + (7 + 7n) = 0

Reorder the terms:
7 + 33n + 7n + 7n2 = 0

Combine like terms: 33n + 7n = 40n
7 + 40n + 7n2 = 0

Solving
7 + 40n + 7n2 = 0

Solving for variable 'n'.

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
1 + 5.714285714n + n2 = 0

Move the constant term to the right:

Add '-1' to each side of the equation.
1 + 5.714285714n + -1 + n2 = 0 + -1

Reorder the terms:
1 + -1 + 5.714285714n + n2 = 0 + -1

Combine like terms: 1 + -1 = 0
0 + 5.714285714n + n2 = 0 + -1
5.714285714n + n2 = 0 + -1

Combine like terms: 0 + -1 = -1
5.714285714n + n2 = -1

The n term is 5.714285714n.  Take half its coefficient (2.857142857).
Square it (8.163265305) and add it to both sides.

Add '8.163265305' to each side of the equation.
5.714285714n + 8.163265305 + n2 = -1 + 8.163265305

Reorder the terms:
8.163265305 + 5.714285714n + n2 = -1 + 8.163265305

Combine like terms: -1 + 8.163265305 = 7.163265305
8.163265305 + 5.714285714n + n2 = 7.163265305

Factor a perfect square on the left side:
(n + 2.857142857)(n + 2.857142857) = 7.163265305

Calculate the square root of the right side: 2.676427713

Break this problem into two subproblems by setting 
(n + 2.857142857) equal to 2.676427713 and -2.676427713.

Subproblem 1

n + 2.857142857 = 2.676427713 Simplifying n + 2.857142857 = 2.676427713 Reorder the terms: 2.857142857 + n = 2.676427713 Solving 2.857142857 + n = 2.676427713 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-2.857142857' to each side of the equation. 2.857142857 + -2.857142857 + n = 2.676427713 + -2.857142857 Combine like terms: 2.857142857 + -2.857142857 = 0.000000000 0.000000000 + n = 2.676427713 + -2.857142857 n = 2.676427713 + -2.857142857 Combine like terms: 2.676427713 + -2.857142857 = -0.180715144 n = -0.180715144 Simplifying n = -0.180715144

Subproblem 2

n + 2.857142857 = -2.676427713 Simplifying n + 2.857142857 = -2.676427713 Reorder the terms: 2.857142857 + n = -2.676427713 Solving 2.857142857 + n = -2.676427713 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-2.857142857' to each side of the equation. 2.857142857 + -2.857142857 + n = -2.676427713 + -2.857142857 Combine like terms: 2.857142857 + -2.857142857 = 0.000000000 0.000000000 + n = -2.676427713 + -2.857142857 n = -2.676427713 + -2.857142857 Combine like terms: -2.676427713 + -2.857142857 = -5.53357057 n = -5.53357057 Simplifying n = -5.53357057

Solution

The solution to the problem is based on the solutions from the subproblems. n = {-0.180715144, -5.53357057}

See similar equations:

| 16x+9=20x+7 | | 9x+2x-17+3=8x-2x+7-1 | | -7(2k-5)=-5-4k | | 0=-16x^2-39 | | 3-4x=-4x-3 | | 4x^3-24x^2-64x=0 | | 3-4x=4x-3 | | Y=4x^3+7x^2-8x+4 | | 2x-9=9-2x | | x+80+x=180 | | x+65+x=180 | | x+65+x=18 | | 2(x+5)-3=1 | | 6n-5=3+10 | | 6+3x=7+3x | | 2x^2+x-180=0 | | 5x-8=5x | | 2/a-b—3/b-a | | 4x+5x-22=6x | | x+72+x=180 | | 2x+52=5x-11 | | 2(-6p-6)=36-4p | | X-(.25x)=140 | | X=140+(.25x) | | log(4)(2x-2)=3 | | X=140-(.25x) | | 7*2-x=3 | | 140/x=.25 | | 15n+16+4n= | | X=140+.25x | | (x+3)(x-5)=4x-15 | | 20-3h=-9(7h-6) |

Equations solver categories