n(n+1)(n+2)(n+3)(n+4)=

Simple and best practice solution for n(n+1)(n+2)(n+3)(n+4)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n+1)(n+2)(n+3)(n+4)= equation:


Simplifying
n(n + 1)(n + 2)(n + 3)(n + 4) = 0

Reorder the terms:
n(1 + n)(n + 2)(n + 3)(n + 4) = 0

Reorder the terms:
n(1 + n)(2 + n)(n + 3)(n + 4) = 0

Reorder the terms:
n(1 + n)(2 + n)(3 + n)(n + 4) = 0

Reorder the terms:
n(1 + n)(2 + n)(3 + n)(4 + n) = 0

Multiply (1 + n) * (2 + n)
n(1(2 + n) + n(2 + n))(3 + n)(4 + n) = 0
n((2 * 1 + n * 1) + n(2 + n))(3 + n)(4 + n) = 0
n((2 + 1n) + n(2 + n))(3 + n)(4 + n) = 0
n(2 + 1n + (2 * n + n * n))(3 + n)(4 + n) = 0
n(2 + 1n + (2n + n2))(3 + n)(4 + n) = 0

Combine like terms: 1n + 2n = 3n
n(2 + 3n + n2)(3 + n)(4 + n) = 0

Multiply (2 + 3n + n2) * (3 + n)
n(2(3 + n) + 3n * (3 + n) + n2(3 + n))(4 + n) = 0
n((3 * 2 + n * 2) + 3n * (3 + n) + n2(3 + n))(4 + n) = 0
n((6 + 2n) + 3n * (3 + n) + n2(3 + n))(4 + n) = 0
n(6 + 2n + (3 * 3n + n * 3n) + n2(3 + n))(4 + n) = 0
n(6 + 2n + (9n + 3n2) + n2(3 + n))(4 + n) = 0
n(6 + 2n + 9n + 3n2 + (3 * n2 + n * n2))(4 + n) = 0
n(6 + 2n + 9n + 3n2 + (3n2 + n3))(4 + n) = 0

Combine like terms: 2n + 9n = 11n
n(6 + 11n + 3n2 + 3n2 + n3)(4 + n) = 0

Combine like terms: 3n2 + 3n2 = 6n2
n(6 + 11n + 6n2 + n3)(4 + n) = 0

Multiply (6 + 11n + 6n2 + n3) * (4 + n)
n(6(4 + n) + 11n * (4 + n) + 6n2 * (4 + n) + n3(4 + n)) = 0
n((4 * 6 + n * 6) + 11n * (4 + n) + 6n2 * (4 + n) + n3(4 + n)) = 0
n((24 + 6n) + 11n * (4 + n) + 6n2 * (4 + n) + n3(4 + n)) = 0
n(24 + 6n + (4 * 11n + n * 11n) + 6n2 * (4 + n) + n3(4 + n)) = 0
n(24 + 6n + (44n + 11n2) + 6n2 * (4 + n) + n3(4 + n)) = 0
n(24 + 6n + 44n + 11n2 + (4 * 6n2 + n * 6n2) + n3(4 + n)) = 0
n(24 + 6n + 44n + 11n2 + (24n2 + 6n3) + n3(4 + n)) = 0
n(24 + 6n + 44n + 11n2 + 24n2 + 6n3 + (4 * n3 + n * n3)) = 0
n(24 + 6n + 44n + 11n2 + 24n2 + 6n3 + (4n3 + n4)) = 0

Combine like terms: 6n + 44n = 50n
n(24 + 50n + 11n2 + 24n2 + 6n3 + 4n3 + n4) = 0

Combine like terms: 11n2 + 24n2 = 35n2
n(24 + 50n + 35n2 + 6n3 + 4n3 + n4) = 0

Combine like terms: 6n3 + 4n3 = 10n3
n(24 + 50n + 35n2 + 10n3 + n4) = 0
(24 * n + 50n * n + 35n2 * n + 10n3 * n + n4 * n) = 0
(24n + 50n2 + 35n3 + 10n4 + n5) = 0

Solving
24n + 50n2 + 35n3 + 10n4 + n5 = 0

Solving for variable 'n'.

Factor out the Greatest Common Factor (GCF), 'n'.
n(24 + 50n + 35n2 + 10n3 + n4) = 0

Subproblem 1

Set the factor 'n' equal to zero and attempt to solve: Simplifying n = 0 Solving n = 0 Move all terms containing n to the left, all other terms to the right. Simplifying n = 0

Subproblem 2

Set the factor '(24 + 50n + 35n2 + 10n3 + n4)' equal to zero and attempt to solve: Simplifying 24 + 50n + 35n2 + 10n3 + n4 = 0 Solving 24 + 50n + 35n2 + 10n3 + n4 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

n = {0}

See similar equations:

| -.75(5.2x-6)=1.2x-0.8-3.7x | | (8x-1)-(6x-5)= | | 3y-9y-7=75.84 | | x-25y^2-50=0 | | 13=5x^2+x | | 2a+3b-5b+a= | | x-25y^2+50=0 | | 2x^3-98x=7 | | 2x+3y+10=30 | | n(n+1)(n+2)= | | -58.109=v+47.736 | | 36=-5x+6 | | 3x+6x(200-x)=840 | | x^2-a=3 | | x-y=y | | m^2-18m=35 | | (w-1)(w^5+w^4+w^3+w^2+w+1)= | | m-(-13)=8 | | 2(2x+10)=x+5(x-4)-2x | | -61+r=-10 | | 25=-11+4x | | 3x-x+17=37 | | s^2-28s-41=0 | | 3(5x+6)=48 | | 45-10x=-75 | | 5y-10y=15 | | 12x-6x+168=12x+90 | | (2r+1)(2r^2+1)= | | 6(5r-8)=10(3+3r) | | 4x+6-2x+9= | | x^2-24x+93=0 | | 5(0.10)+3(0.50)-t=2.12 |

Equations solver categories