n(n+1)(n-1)(n-2)=840

Simple and best practice solution for n(n+1)(n-1)(n-2)=840 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n+1)(n-1)(n-2)=840 equation:


Simplifying
n(n + 1)(n + -1)(n + -2) = 840

Reorder the terms:
n(1 + n)(n + -1)(n + -2) = 840

Reorder the terms:
n(1 + n)(-1 + n)(n + -2) = 840

Reorder the terms:
n(1 + n)(-1 + n)(-2 + n) = 840

Multiply (1 + n) * (-1 + n)
n(1(-1 + n) + n(-1 + n))(-2 + n) = 840
n((-1 * 1 + n * 1) + n(-1 + n))(-2 + n) = 840
n((-1 + 1n) + n(-1 + n))(-2 + n) = 840
n(-1 + 1n + (-1 * n + n * n))(-2 + n) = 840
n(-1 + 1n + (-1n + n2))(-2 + n) = 840

Combine like terms: 1n + -1n = 0
n(-1 + 0 + n2)(-2 + n) = 840
n(-1 + n2)(-2 + n) = 840

Multiply (-1 + n2) * (-2 + n)
n(-1(-2 + n) + n2(-2 + n)) = 840
n((-2 * -1 + n * -1) + n2(-2 + n)) = 840
n((2 + -1n) + n2(-2 + n)) = 840
n(2 + -1n + (-2 * n2 + n * n2)) = 840
n(2 + -1n + (-2n2 + n3)) = 840
n(2 + -1n + -2n2 + n3) = 840
(2 * n + -1n * n + -2n2 * n + n3 * n) = 840
(2n + -1n2 + -2n3 + n4) = 840

Solving
2n + -1n2 + -2n3 + n4 = 840

Solving for variable 'n'.

Reorder the terms:
-840 + 2n + -1n2 + -2n3 + n4 = 840 + -840

Combine like terms: 840 + -840 = 0
-840 + 2n + -1n2 + -2n3 + n4 = 0

The solution to this equation could not be determined.

See similar equations:

| 1=g/2-2 | | (10n)3/2 | | 0=-5x-(625/10) | | -5=5-2d | | -w/3=12 | | 2B-11=88 | | -4/7x=16/27 | | 2v+1=10 | | 2x^2+2x+75=0 | | y/4=14 | | (2+w)(4w-5)=0 | | 20x-23=7 | | 6(X+5m+4)= | | 9=5+2t | | 2[2y+5]=26 | | c=cx+n | | X^9/x^2 | | 2xy+6a=8x | | v^2+6-7=0 | | 19n=190 | | 3=2w-1 | | 7=v-8 | | -4k+2(5k-6)=-3k-38 | | 1/2(2)-3=y | | 2/3×9/20 | | -7v=140 | | D+30=9 | | C+24=-10 | | (8y-5w)= | | A-8=-14 | | 3q+1=7 | | (X^2+15-8x)=0 |

Equations solver categories