If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)/(n-3)=72/5
We move all terms to the left:
n(n+1)/(n-3)-(72/5)=0
Domain of the equation: (n-3)!=0We add all the numbers together, and all the variables
We move all terms containing n to the left, all other terms to the right
n!=3
n∈R
n(n+1)/(n-3)-(+72/5)=0
We get rid of parentheses
n(n+1)/(n-3)-72/5=0
We calculate fractions
(5n^2+5n)/(5n-15)+(-72n+216)/(5n-15)=0
We multiply all the terms by the denominator
(5n^2+5n)+(-72n+216)=0
We get rid of parentheses
5n^2+5n-72n+216=0
We add all the numbers together, and all the variables
5n^2-67n+216=0
a = 5; b = -67; c = +216;
Δ = b2-4ac
Δ = -672-4·5·216
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-67)-13}{2*5}=\frac{54}{10} =5+2/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-67)+13}{2*5}=\frac{80}{10} =8 $
| -8x-112=158+x | | 15-m=-7-3m | | 20s=19s-17 | | 3.4=m7.7 | | 12+q=24 | | 40x+3x=8x | | 3(t+1)=t | | N^2+12=-8n | | 3(2t-3)=t | | 9x+6=6x(2) | | -5.08-14r+5.99=11.63-13.2r | | 4x-3(-8/6x-3)=1 | | 6b-5,b=10 | | (X+4)3=18+x | | 6b-5,b=5 | | 13y+20=15y-20-6y | | -78-7x=-14x+55 | | 2w=-14+w | | 5j=70 | | 17+7b=-19-5b | | 25+5w=50-10w | | -18=-3+p | | -135+6x=-3x+90 | | -11.04+6.3s=6.9s | | -21b-13=b+8 | | 483.45=33(x+2.65) | | 12+9c=3c+12 | | -4+w=19 | | 2y-3y-9+2=31 | | -12q+18-15=-14q-17 | | -4h+9=-3h | | x+16+x+20=5x |