If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)=1320
We move all terms to the left:
n(n+1)-(1320)=0
We multiply parentheses
n^2+n-1320=0
a = 1; b = 1; c = -1320;
Δ = b2-4ac
Δ = 12-4·1·(-1320)
Δ = 5281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5281}}{2*1}=\frac{-1-\sqrt{5281}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5281}}{2*1}=\frac{-1+\sqrt{5281}}{2} $
| 75-9g=-20+10 | | (2x+5)/3x=5/8 | | 6y/3=5y/8 | | -x+2X+8=0 | | 2/9x=1/3 | | 9x=1/6 | | 3(y-12)=8(y-7) | | 9x-58=46 | | 4a-3=10-1 | | 43+x/4=5 | | 2(-4h-13=37+13h | | 142-13x=376 | | 12x*10=5 | | 2(20^x)=41 | | 2/5x=6/5=-2/5 | | 10x*10=5 | | 2(3a-4)=4(5-2a | | -3t-4=17 | | -7+w+1=11 | | 2×20^x=41 | | 3s^2-9s+4=0 | | 125m-100m+43,200=45,450-200m | | 4^-x=2^4 | | 1320=6x=0 | | 3^1-^2x=243 | | 8(2l+7)=72l= | | 2^2x+2=2^3x | | 3x^2−32x+45=0 | | (3x-5)(2x-5)=(x-1)(6x-3) | | 1/2x=2/3/4 | | 12-6x=32 | | 4^2p=4^-2p-1 |