If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)=35
We move all terms to the left:
n(n+1)-(35)=0
We multiply parentheses
n^2+n-35=0
a = 1; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·1·(-35)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{141}}{2*1}=\frac{-1-\sqrt{141}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{141}}{2*1}=\frac{-1+\sqrt{141}}{2} $
| 7-(-8r-5)=-4(3-3r) | | 6a-5(a-2)+9=-11 | | -25=-1/8x | | 32=3(1-3x)+2 | | 6p-5p=10 | | -5d+9=-18+4d | | 3p-3p+p=9 | | b(b-5)^2=0 | | 2h+3=5h-3 | | 16s-15s=9 | | 18+v/4=12 | | 1/2n+5=3/4n-10 | | -y/12=1/4 | | -10/3(-7/2n+1)=-65/2 | | 130=20x+23x+1 | | 2(9x-6)=4x+16 | | 9x+5-8x+14=20 | | 18+v/4=12/18 | | 12x-165=-43 | | 10×+8=5x-3 | | -5/12x-1/3=2/3x+3/4 | | 7h-h-2h+h=5 | | 400+b+3=453 | | 2h-3=3+5h | | (2x+1)+(5x+5)=180 | | 90=4x-40 | | 3(2x+5)+2(x–4)=7 | | 5k-6(1+6k)=5k-6 | | 18+483g=21+462g | | 4(2m-3)+4=14m | | 20y-18y=12 | | m+16-28=5 |