If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)=380
We move all terms to the left:
n(n+1)-(380)=0
We multiply parentheses
n^2+n-380=0
a = 1; b = 1; c = -380;
Δ = b2-4ac
Δ = 12-4·1·(-380)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-39}{2*1}=\frac{-40}{2} =-20 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+39}{2*1}=\frac{38}{2} =19 $
| -(x+4)+2(4x+6)=-69 | | 9(1+3x)=90 | | 4x+2(3x-3+2)=8 | | -10=5x-2(x+2) | | X/15=4/y | | 4(5-6a)+12(1+a)=-6a-6a | | -10=5x-2x-4 | | 6x+2(15-5x)=16+8x-10 | | 6y+2-2(-4y-1)=4(y-1) | | c+4+c+2=3c+1 | | 6(x-1)+6(2x+1)=-54 | | 17x+1=-6+18x | | m÷4-5=18 | | n(n+1)=552 | | 80=4y+8 | | x+74+114+x=180 | | 6+10x=8x12 | | (7x+10-3x)/3=14 | | x+74+11+x=180 | | 7(y+2)–(4y–10)=41–2y+5 | | (3b-10)=14 | | 18=-3+3x+15 | | 7+2(a-33)=-9 | | z/2=6-z/2 | | 2(x-9)=5x-12 | | 7p/8+10/8=3 | | 4(x+7)^2=11 | | 2(x+8)/3=9 | | (9-3v)=24 | | 4.8x/2=7.6 | | 2x-18=5x-12 | | x3−4.1=9.7 |