If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+16)=-5
We move all terms to the left:
n(n+16)-(-5)=0
We add all the numbers together, and all the variables
n(n+16)+5=0
We multiply parentheses
n^2+16n+5=0
a = 1; b = 16; c = +5;
Δ = b2-4ac
Δ = 162-4·1·5
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{59}}{2*1}=\frac{-16-2\sqrt{59}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{59}}{2*1}=\frac{-16+2\sqrt{59}}{2} $
| -(a+5)=-13+7a | | -(a+5)=-+7a | | 4x+(2x+5)=1 | | -(a+5)=+7a | | 3(2x+2)=2(4x+2) | | 8(1-6n)=-8-32 | | 2(d+6)=18 | | 9m=12m+15 | | P+3*2=p+9*4 | | 3(3x-1/2x+3)-2(2x+3/3x-1)=5 | | x+44/9=15 | | 3/4(5x-1)=7 | | 4*20^x-20*5^x-1+5*4^x+1-20=0 | | x2-17x+50=0 | | -1/4(5x-1)=7 | | 2x+5÷4=5x-2 | | y2+49=0 | | -21n-49=-31-5 | | 3=-16t^2+166t+0 | | 7x+16=14+8-5x | | 3n–2=4 | | 2=0y | | 3^5x-2=4 | | 400-3a=160 | | 10x-19=3x+5 | | (3x+4)+(8x+4)=140 | | 59=7y+3 | | x^2-25-(x+5)=0 | | 6x+4=2(2x-) | | -45=10t-5t^2 | | 5x^2+30x+14=0 | | -96=-6(m+8) |