If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+75)=180
We move all terms to the left:
n(n+75)-(180)=0
We multiply parentheses
n^2+75n-180=0
a = 1; b = 75; c = -180;
Δ = b2-4ac
Δ = 752-4·1·(-180)
Δ = 6345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6345}=\sqrt{9*705}=\sqrt{9}*\sqrt{705}=3\sqrt{705}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-3\sqrt{705}}{2*1}=\frac{-75-3\sqrt{705}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+3\sqrt{705}}{2*1}=\frac{-75+3\sqrt{705}}{2} $
| 3x-5/2=-5x-4/3 | | 6(21+6y)+2y=-26 | | 2y=-4+11 | | F(-2)=-3x-2+2.5 | | 7.4=−t5.5 | | 5.5x=71.5 | | 12=-2p-2p | | 2x+4x-8+3x+6=180 | | x^2+66=14x+15 | | -4=-3f+2f | | 3x+90+x+2=180 | | 22v=704 | | 3(1x3 | | x+10x+x=180 | | 260=13d | | 0.5^x=0.495 | | x+5+29+72=180 | | F(-2)=-3x+2.5 | | 99-4s=-1 | | 20q=560 | | 13z=871 | | 3x+7=5x+5* | | −3x−36=4x+20 | | F(1)=-3x+2.5 | | -2.4+4x=-1.4 | | 7x-95=3x-11 | | 9^3x+1=27^3x+1 | | 38+4x=134 | | x2+5.5=5 | | 3x=18-4x | | x/2.5=4.2 | | x/0.2=0.12 |