n(n-1)(n+1)=6

Simple and best practice solution for n(n-1)(n+1)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n-1)(n+1)=6 equation:



n(n-1)(n+1)=6
We move all terms to the left:
n(n-1)(n+1)-(6)=0
We use the square of the difference formula
n^2-1-6=0
We add all the numbers together, and all the variables
n^2-7=0
a = 1; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·1·(-7)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*1}=\frac{0-2\sqrt{7}}{2} =-\frac{2\sqrt{7}}{2} =-\sqrt{7} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*1}=\frac{0+2\sqrt{7}}{2} =\frac{2\sqrt{7}}{2} =\sqrt{7} $

See similar equations:

| 3-v=221 | | x^2+314.019418*x+24673.20799626468=40 | | 2(5a-2)=26 | | -11n–-n–3n=13 | | 9x+6-10+15=3 | | 3(x-2)+3=0 | | x^2+314.019418*x+24673.20799626468=20 | | x÷30=2÷45 | | x^2+314.019418*x+24673.20799626468=10 | | 4r–2r=14 | | x^2+314.019418*x+24673.20799626468=100 | | 4x+9-2x+9=2x+18 | | 7(2+x=4x-1 | | x^2+314.019418*x+24673.20799626468=0 | | x/9+x=5/18 | | 1.3+0.6x=0.3+5 | | 2(x-8)+5=-6(x+3) | | 3x-2(-2x+7)=-7 | | 12a–11a=16 | | 3x^2-x-93x=0 | | 14u–10u=20 | | 3g+3g=18 | | 3x-2(3-x)=4x-5 | | 18a–10a=8 | | 42-2w=4w | | F(X)=2(1.05)x | | H(x)=(9-x)/(4x-31) | | 2.3x-4.2=-66.3 | | 4^8x+3=7 | | 1.1+8.5x=2.25+2.25x | | 3(a+2)=5a-4 | | 8/y=14/6 |

Equations solver categories