n(n-1)(n+1)=990

Simple and best practice solution for n(n-1)(n+1)=990 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n-1)(n+1)=990 equation:



n(n-1)(n+1)=990
We move all terms to the left:
n(n-1)(n+1)-(990)=0
We use the square of the difference formula
n^2-1-990=0
We add all the numbers together, and all the variables
n^2-991=0
a = 1; b = 0; c = -991;
Δ = b2-4ac
Δ = 02-4·1·(-991)
Δ = 3964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3964}=\sqrt{4*991}=\sqrt{4}*\sqrt{991}=2\sqrt{991}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{991}}{2*1}=\frac{0-2\sqrt{991}}{2} =-\frac{2\sqrt{991}}{2} =-\sqrt{991} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{991}}{2*1}=\frac{0+2\sqrt{991}}{2} =\frac{2\sqrt{991}}{2} =\sqrt{991} $

See similar equations:

| 0=128-120x-x^2 | | 2x√3=24 | | (5x-4)(4x+7)=0 | | 3s+13=0 | | X+5÷3=1÷7x-8÷9 | | 6x+7÷3x+2=4x+5÷2x+3 | | 3x^2+31-6.9=0 | | w^2-23w+120=0 | | 0.04(4t-4)=0.16(t+2)-0.48 | | 0.4x+0.2=0.8x-0.6 | | 0.04x+0.2=0.8x-0.6 | | 0.1-0.01(x+3)=-0.03(3-x) | | (x-2)^2-9=7 | | X^+2x-120=0 | | (10/x+2)+(6/x-2)=2 | | 0.01-0.01(x+3)=-0.03(3-x) | | 5(x-2)+6=2x+3(-3+x) | | 16^4x=8 | | 2(2n+3)=8(3n+5)+8 | | 26x+10=3(7x+3)+5x+1 | | 28x^2=23x+15 | | 6(x-1)/9=2(x+4)/8 | | 6x-1/9=2x+8/8 | | x+1/3+1/2=x-3/2 | | x+1/5=4x-2 | | .99x=x-1.98 | | 5(2=y)=77 | | 8(x=2)=48 | | 5(2x+3)^5=0 | | 48=8(x=2) | | -5(4t-5)+8t=2t-4 | | 7^1-x=1/49 |

Equations solver categories