n(n-1)=34782

Simple and best practice solution for n(n-1)=34782 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n-1)=34782 equation:



n(n-1)=34782
We move all terms to the left:
n(n-1)-(34782)=0
We multiply parentheses
n^2-1n-34782=0
a = 1; b = -1; c = -34782;
Δ = b2-4ac
Δ = -12-4·1·(-34782)
Δ = 139129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{139129}=373$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-373}{2*1}=\frac{-372}{2} =-186 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+373}{2*1}=\frac{374}{2} =187 $

See similar equations:

| -2x+-2+3=-4x+9 | | x-1-5=-15-8x | | 5/2c+3=1/2c+15 | | m=1.33 | | -10x+8=3 | | 99x+1+1+135×=36 | | -a/3=1 | | 19.5+0.9x=10.6206 | | 3x+2=8x−18 | | 2x-16+x-2=3 | | 5x+13+3x+7=7 | | 19=(0.007*x) | | 7+v/5=42 | | 2u+10+6=–8−2u | | -2-4a=4+2a | | 84=3-(20x-1) | | 12+3x-5x=4x+6 | | x4–4x2–5=0 | | -10q=-7q-9 | | 19=(0.7*x) | | 10q=-7q-9 | | 2x-19+×-3=11 | | -3(3m-10)-7=-5(5m+1)+3m | | -16+4=-4x | | 4x-33-9x=2+x | | 1.46g-3=8.65 | | 14x+15=42+4x | | 7x+4=102 | | 3+8+x=6+5 | | 11x+1=5x-2 | | –10q=–7q−9 | | -3m+2-4m=-7m+4 |

Equations solver categories