n(n-4)+n(n+8)=n(n-13)+16

Simple and best practice solution for n(n-4)+n(n+8)=n(n-13)+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n-4)+n(n+8)=n(n-13)+16 equation:



n(n-4)+n(n+8)=n(n-13)+16
We move all terms to the left:
n(n-4)+n(n+8)-(n(n-13)+16)=0
We multiply parentheses
n^2+n^2-4n+8n-(n(n-13)+16)=0
We calculate terms in parentheses: -(n(n-13)+16), so:
n(n-13)+16
We multiply parentheses
n^2-13n+16
Back to the equation:
-(n^2-13n+16)
We add all the numbers together, and all the variables
2n^2+4n-(n^2-13n+16)=0
We get rid of parentheses
2n^2-n^2+4n+13n-16=0
We add all the numbers together, and all the variables
n^2+17n-16=0
a = 1; b = 17; c = -16;
Δ = b2-4ac
Δ = 172-4·1·(-16)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{353}}{2*1}=\frac{-17-\sqrt{353}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{353}}{2*1}=\frac{-17+\sqrt{353}}{2} $

See similar equations:

| 3(6x+3)=12+3x | | F=(9/5×c)+32 | | 32g+8g+10g=150 | | 25x+20x=690 | | 3x^2-15=72 | | 1/2t=5/9 | | j(2j+3)+20=2j(j-3) | | -3(4p+4)-2(4-14p)=3(5+5p) | | -2x-3=5x+11 | | 45x/6x= | | 4.5y+6=10y+5 | | 3.5×=8x-15 | | x=195+.65x | | 8x+7+7x-3=-7x+22x-8 | | x=90+.75x | | x=140+.65x | | 1/3x+1/5=5(2/3x-2) | | x=140+.75x | | 4b+2b=-21 | | D+5c=3$-1 | | 2x+32=42 | | (v+9)1/15=0 | | 28/p-5=8.4 | | 2m2=2m-12=0 | | a−4/3​=9 | | 5-7x=-4x-7 | | a–1.6=0.54 | | 3/a−4​ =9 | | 1/2x+5=1/4x+7.5 | | 3a−4​ =9 | | 5x^2−80=0 | | 5x2−80=0 |

Equations solver categories