If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n-4)+n(n+8)=n(n-13)+n(n-13)+n(n+1)+16
We move all terms to the left:
n(n-4)+n(n+8)-(n(n-13)+n(n-13)+n(n+1)+16)=0
We multiply parentheses
n^2+n^2-4n+8n-(n(n-13)+n(n-13)+n(n+1)+16)=0
We calculate terms in parentheses: -(n(n-13)+n(n-13)+n(n+1)+16), so:We add all the numbers together, and all the variables
n(n-13)+n(n-13)+n(n+1)+16
We multiply parentheses
n^2+n^2+n^2-13n-13n+n+16
We add all the numbers together, and all the variables
3n^2-25n+16
Back to the equation:
-(3n^2-25n+16)
2n^2+4n-(3n^2-25n+16)=0
We get rid of parentheses
2n^2-3n^2+4n+25n-16=0
We add all the numbers together, and all the variables
-1n^2+29n-16=0
a = -1; b = 29; c = -16;
Δ = b2-4ac
Δ = 292-4·(-1)·(-16)
Δ = 777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{777}}{2*-1}=\frac{-29-\sqrt{777}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{777}}{2*-1}=\frac{-29+\sqrt{777}}{-2} $
| 6+11x=(-4+x) | | 8n-22+6n=-2+38n-5 | | 6x-3=(13x-73) | | (k+1/2)^=9/16 | | 2x+32=(9x-45) | | 8n-22+6n=-2+( | | 5x=(3x+14) | | 3x-3=(x+3) | | 6=(-2x+30) | | (w-9)^=12 | | 6x-10=(5x+11) | | (x+10)^=36 | | 14+5z=-1 | | 2x-x-9=6 | | 0=-2x^2+8x+42 | | -2+2x=(-3+9x) | | 2x+7=(-17-10x) | | 20-6x=(13-7x) | | 4x+6=(-64-6x) | | |x^2-3x|=4 | | (x^2-3x)^2-4=0 | | 5x+12x=(-6+x) | | 5+12x=(-6+x) | | 5x-1=(13x-41) | | 6x+18=(15x-72) | | 8x=(5x+18) | | 3x-1=(x+5) | | 3=(-3x+30) | | 3=(-3x+30 | | (8)^x=0.343 | | n*2+3=37 | | 167=20-49r |