If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)=720
We move all terms to the left:
n(n+1)-(720)=0
We multiply parentheses
n^2+n-720=0
a = 1; b = 1; c = -720;
Δ = b2-4ac
Δ = 12-4·1·(-720)
Δ = 2881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2881}}{2*1}=\frac{-1-\sqrt{2881}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2881}}{2*1}=\frac{-1+\sqrt{2881}}{2} $
| -54w=6 | | N(n+1)=720 | | 8+p-1=5p+3p | | 3/4x-2.4/5=-17.8 | | 3/4x-24/5=-17.8 | | -4c+(-)2=(-)18 | | 15x+7(25/2x+35)=-360 | | √−100=+i | | -7=z+8 | | /2(6-2a)-4(6-2a)=28 | | 7e+3=4e+5= | | -507=-13w | | 132=g-32 | | 6=2x=10 | | .75x-2.80=-17.8 | | 0.5+7y=20 | | f-293=31 | | 2^2^x-5(2^x)+4=0 | | t+-78=-934 | | (-11+x)/3=-2 | | 11=t/20 | | 9=y+28 | | n-17=55 | | -14y=168 | | n÷6=13 | | 6b+16=40 | | 43−3/b=59 | | 12x-2/3+2/3=83(1/3 | | 6a-28=8 | | 77=–7(w+80) | | 5c+5=10 | | 9(y+94)=63 |