n*(n-1)*(n+1)=1000

Simple and best practice solution for n*(n-1)*(n+1)=1000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n*(n-1)*(n+1)=1000 equation:



n(n-1)(n+1)=1000
We move all terms to the left:
n(n-1)(n+1)-(1000)=0
We use the square of the difference formula
n^2-1-1000=0
We add all the numbers together, and all the variables
n^2-1001=0
a = 1; b = 0; c = -1001;
Δ = b2-4ac
Δ = 02-4·1·(-1001)
Δ = 4004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4004}=\sqrt{4*1001}=\sqrt{4}*\sqrt{1001}=2\sqrt{1001}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1001}}{2*1}=\frac{0-2\sqrt{1001}}{2} =-\frac{2\sqrt{1001}}{2} =-\sqrt{1001} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1001}}{2*1}=\frac{0+2\sqrt{1001}}{2} =\frac{2\sqrt{1001}}{2} =\sqrt{1001} $

See similar equations:

| 1/3(2u+9)-u/4+6=19 | | 24+4.5=24n | | 3(2m+1)=6(m-2)+15 | | 0.1x-0.006=0.08x | | -3(d-4)=-2d-2(8+4d) | | Y-3=-8(x-4) | | 15v+46v=122 | | .75=n×15 | | -2p-3=9 | | X=5x-3(4/5) | | 1/5(15x+10)=6x-4 | | 25(65-y)+20y=1500 | | 3(y+1)-2=3y+2 | | 2.4=5x-1x | | 7v/8=35 | | 910÷n=35 | | 11=1-11/2n | | -9(1-5c)=-(-9c+9) | | 80x-300+20x=450-50x | | 8×+4(4x-3)=4(6x+4)-4 | | 15×.75=n | | 100^-x=10^3x-12 | | 10+5x=6x+2 | | 1/2w=-8 | | 14x-5=191 | | 14/5=2v | | 2x+80=450= | | 11w+13=10 | | -4x-2(4x-17)=166 | | 6(2x-7)+5x=3x-42+14x | | R^2-9r+20.25=0 | | X+x+80=450 |

Equations solver categories