n+(1/2n)=90

Simple and best practice solution for n+(1/2n)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n+(1/2n)=90 equation:



n+(1/2n)=90
We move all terms to the left:
n+(1/2n)-(90)=0
Domain of the equation: 2n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
n+(+1/2n)-90=0
We get rid of parentheses
n+1/2n-90=0
We multiply all the terms by the denominator
n*2n-90*2n+1=0
Wy multiply elements
2n^2-180n+1=0
a = 2; b = -180; c = +1;
Δ = b2-4ac
Δ = -1802-4·2·1
Δ = 32392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32392}=\sqrt{4*8098}=\sqrt{4}*\sqrt{8098}=2\sqrt{8098}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-2\sqrt{8098}}{2*2}=\frac{180-2\sqrt{8098}}{4} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+2\sqrt{8098}}{2*2}=\frac{180+2\sqrt{8098}}{4} $

See similar equations:

| 40=20+(x/2) | | 3d=4-9d=12=0 | | 3+5x=5x+5 | | 2x+3(54/13)=18 | | 9(r+1)^2=144 | | 9(9x+15)-7x=-13 | | 25.68=2x- | | 4m-5=11;m | | 4/5=3/4+y | | 2(q-3)-8=q | | 9g-7=-7 | | 38=-7u+5(u+4) | | 2×+5+3x-10=55 | | 9/13=x/60 | | 19x+5=-23 | | (3/2)x-7=11 | | X+9=7x+14 | | 8n+7=13+7 | | 5x=13+17 | | -x+49=178 | | 0.25(172-x)+2.35x=294.2 | | 3x-4*1/2=-19*1/2 | | -4(1x+10)=-88 | | 204=68-w | | 200=252-u | | 5(-3x-8)=-160 | | -12+n=-15 | | 6(-5x-5)=-330 | | 2-5x=-5x-2x+2x | | 2x+1/4-3(3-x)/2=5-24-x/16 | | 5(1x-8)=-45 | | 3+5x{x+3}=4x-9 |

Equations solver categories