n+1/2n+1/2n=180

Simple and best practice solution for n+1/2n+1/2n=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n+1/2n+1/2n=180 equation:



n+1/2n+1/2n=180
We move all terms to the left:
n+1/2n+1/2n-(180)=0
Domain of the equation: 2n!=0
n!=0/2
n!=0
n∈R
We multiply all the terms by the denominator
n*2n-180*2n+1+1=0
We add all the numbers together, and all the variables
n*2n-180*2n+2=0
Wy multiply elements
2n^2-360n+2=0
a = 2; b = -360; c = +2;
Δ = b2-4ac
Δ = -3602-4·2·2
Δ = 129584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129584}=\sqrt{16*8099}=\sqrt{16}*\sqrt{8099}=4\sqrt{8099}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-4\sqrt{8099}}{2*2}=\frac{360-4\sqrt{8099}}{4} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+4\sqrt{8099}}{2*2}=\frac{360+4\sqrt{8099}}{4} $

See similar equations:

| 4x+5=10-5x | | 11b^2-3b+15=4 | | 7x-2=23+2 | | 18-4x+12=6 | | 50x+60=40x+100 | | 3x+7-2=29 | | 36-3x=6 | | -3b=96+1b | | 5+4x=10-5x | | 3x+2=3×-1 | | 4k^2-7k+1=0 | | 1.07g=52 | | 55x-33​(x-55​)=-66+44x+13 | | 3(2x-5)+4x=4(3x+2)-2x | | x+2/16=1/8+x-7/4 | | 5x-7x=24 | | 3×+y÷4=-y÷8 | | 8x-14=2x+2-2x | | 2x+3(x-1)+7x=0 | | m^-10m+24=(m-12)(m+2) | | 55=6x+4x+5 | | 6y-3=-12 | | 5(4n-4=-60 | | T1/8^2x=4^12 | | 5=​2.2/​​w​​ | | 1/5(30x-10)=15 | | x-50=x/2+25 | | 5=​2.2/​w​​ | | 4x-4=2(4-x) | | p(5)=8(2^5) | | -9+5v=-44 | | −10=−14v+14v |

Equations solver categories