n+4/n-5+(-3n-5)/n-5

Simple and best practice solution for n+4/n-5+(-3n-5)/n-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n+4/n-5+(-3n-5)/n-5 equation:


D( n )

n = 0

n = 0

n = 0

n in (-oo:0) U (0:+oo)

(-3*n-5)/n+n+4/n-5-5 = 0

(-3*n-5)/n+(n^2)/n+4/n+(-5*n)/n+(-5*n)/n = 0

n^2-3*n-5*n-5*n-5+4 = 0

n^2-3*n-5*n-5*n-1 = 0

n^2-8*n-5*n-1 = 0

n^2-13*n-1 = 0

n^2-13*n-1 = 0

n^2-13*n-1 = 0

DELTA = (-13)^2-(-1*1*4)

DELTA = 173

DELTA > 0

n = (173^(1/2)+13)/(1*2) or n = (13-173^(1/2))/(1*2)

n = (173^(1/2)+13)/2 or n = (13-173^(1/2))/2

(n-((13-173^(1/2))/2))*(n-((173^(1/2)+13)/2)) = 0

((n-((13-173^(1/2))/2))*(n-((173^(1/2)+13)/2)))/n = 0

((n-((13-173^(1/2))/2))*(n-((173^(1/2)+13)/2)))/n = 0 // * n

(n-((13-173^(1/2))/2))*(n-((173^(1/2)+13)/2)) = 0

( n-((13-173^(1/2))/2) )

n-((13-173^(1/2))/2) = 0 // + (13-173^(1/2))/2

n = (13-173^(1/2))/2

( n-((173^(1/2)+13)/2) )

n-((173^(1/2)+13)/2) = 0 // + (173^(1/2)+13)/2

n = (173^(1/2)+13)/2

n in { (13-173^(1/2))/2, (173^(1/2)+13)/2 }

See similar equations:

| 0=2x^2-5x-55 | | 2.3x+13.7=1.3+2.9 | | x+3/y-2+2x-1/y-2 | | 2x-4-5=0 | | 0=t^2-2t-48 | | x/y+3/y | | (10,3)m=-2 | | 5(8+5)= | | 0+(50*1)-60(-60*0)+10= | | (-1,6)m=5 | | 3x+2=3x+2(0.5) | | 5t+20-8= | | 8c+6=7zh+4 | | 4s-2=8-2s | | 9x+8=6x+173 | | -5(y+1)+2(3-5y)= | | -5(y-1)+2(3-5y)= | | 7n+1=5n+25 | | 3n+9=2n-6 | | n+3n+5=37 | | .5y-3=.333333 | | 4n-25=9n | | n+2=16-6n | | 1.8+7n=.5-4n | | 2.7y+6.1+3.2y-4.9= | | 3x+2x=4 | | 3x+18=65-5x | | x+0.14x=7404.3 | | x^2+1x-3.75=0 | | 30-3x=6x-20 | | 3x3/5 | | -2-9(-5-8r)= |

Equations solver categories