If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n-10=5/6n-7-13n
We move all terms to the left:
n-10-(5/6n-7-13n)=0
Domain of the equation: 6n-7-13n)!=0We add all the numbers together, and all the variables
We move all terms containing n to the left, all other terms to the right
6n-13n)!=7
n∈R
n-(-13n+5/6n-7)-10=0
We get rid of parentheses
n+13n-5/6n+7-10=0
We multiply all the terms by the denominator
n*6n+13n*6n+7*6n-10*6n-5=0
Wy multiply elements
6n^2+78n^2+42n-60n-5=0
We add all the numbers together, and all the variables
84n^2-18n-5=0
a = 84; b = -18; c = -5;
Δ = b2-4ac
Δ = -182-4·84·(-5)
Δ = 2004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2004}=\sqrt{4*501}=\sqrt{4}*\sqrt{501}=2\sqrt{501}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{501}}{2*84}=\frac{18-2\sqrt{501}}{168} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{501}}{2*84}=\frac{18+2\sqrt{501}}{168} $
| 2(5-3x=85-2x | | 5=1.5*3x-2/6 | | -3+3a=3 | | 4t2+-4t+1=0 | | N+(n+15)+(n-10)+(n+23)=108 | | 5=1.5(3x-2/6) | | 3x-4=5-12 | | 9/x+4=6 | | 2(3-4x)=2x-(x-5) | | 61.7=b+3.9 | | -b^2-7b=0 | | N+2n+4n=105 | | 6+5(m+1)=16 | | 73=4u+9 | | 5n+19+3n+17=180 | | –3=–3(2t–1) | | 9-a/2=-18 | | H(x)=-1/5x-7 | | n+3n+(3n-10)=74 | | K+4÷5=k+9÷3 | | 2(x+4-5=2×+3 | | √3a+a=4 | | 2x-(x-1)/2=5(x-3)/4 | | 11x-20+7x=180 | | 6=-2/3x | | 7x(x-4)=5*(x-2) | | 7x-1/2=5x-15/4 | | X+5=7x-3 | | 92=4(4+v) | | N=3m-6+m | | 12x+17+55=180 | | 10+7n=66 |