If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n-16+4/5n=24
We move all terms to the left:
n-16+4/5n-(24)=0
Domain of the equation: 5n!=0We add all the numbers together, and all the variables
n!=0/5
n!=0
n∈R
n+4/5n-40=0
We multiply all the terms by the denominator
n*5n-40*5n+4=0
Wy multiply elements
5n^2-200n+4=0
a = 5; b = -200; c = +4;
Δ = b2-4ac
Δ = -2002-4·5·4
Δ = 39920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39920}=\sqrt{16*2495}=\sqrt{16}*\sqrt{2495}=4\sqrt{2495}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-4\sqrt{2495}}{2*5}=\frac{200-4\sqrt{2495}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+4\sqrt{2495}}{2*5}=\frac{200+4\sqrt{2495}}{10} $
| 65x=52+63 | | x-x/8+2=6 | | 2x–5+3x=180 | | 3u+14=59 | | 63x=63+52 | | 3x+43=5x+3 | | x/7-0.6=3.6 | | 5x+7x-9=0 | | 11/2x=32-x | | 92.5=6x-1 | | p/6-19=-9 | | m-2=3m-12 | | 1/3x+1/3(2/3x)+1/3(2/3x-(1/3)2/3x)-x=16 | | 65+1x=180 | | 3x=8-7x | | 2^+2x-3=0 | | x2−11x+56=5x+13 | | 3(x+1)+(x+3)=30+(x+1) | | 2x+36=180x= | | a−8a=210 | | C(x)=$25.25-0.09x | | 3x+3(x-2)+6=2(2x+3)+x-4 | | 5x+3=123 | | 40=2xx2 | | 10y-7=57 | | -82=7x+2x-10 | | 7-(x+5)=4(x+3) | | 4+4x+3x=-66 | | 6-w=12 | | 4x+(3x+26)=180 | | -24=5-6z | | 3(x+5)+2(-6-x)=-2x |