n/5-3n/4n+5n/8=32

Simple and best practice solution for n/5-3n/4n+5n/8=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n/5-3n/4n+5n/8=32 equation:



n/5-3n/4n+5n/8=32
We move all terms to the left:
n/5-3n/4n+5n/8-(32)=0
Domain of the equation: 4n!=0
n!=0/4
n!=0
n∈R
We calculate fractions
256n^2/1280n+400n^2/1280n+(-960n)/1280n-32=0
We multiply all the terms by the denominator
256n^2+400n^2+(-960n)-32*1280n=0
We add all the numbers together, and all the variables
656n^2+(-960n)-32*1280n=0
Wy multiply elements
656n^2+(-960n)-40960n=0
We get rid of parentheses
656n^2-960n-40960n=0
We add all the numbers together, and all the variables
656n^2-41920n=0
a = 656; b = -41920; c = 0;
Δ = b2-4ac
Δ = -419202-4·656·0
Δ = 1757286400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1757286400}=41920$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41920)-41920}{2*656}=\frac{0}{1312} =0 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41920)+41920}{2*656}=\frac{83840}{1312} =63+37/41 $

See similar equations:

| 6x+90=390 | | 6x+90=-20 | | 6x+90=-450 | | 6x+90=50 | | 3(x+10)+^=3(x+12) | | 48V2=h*2*11.31 | | 50x-20=10x+60 | | (25+x)^0.5=0 | | (10)3x+5=225 | | 3x-12=1x+6 | | 27x6-28x3+1=0 | | 8383x=84-822+72x | | Y=9x-7/5x-6 | | 56+79+153+x=360 | | 32+95+x=180 | | 38+87+127+x=360 | | 52+88+131+x=360 | | 2^x=12.8 | | 3x+13=3(x | | 3x=77147 | | 5y+7=3y+(-3) | | 4k+3=3k+1 | | 6a.2+3=0 | | -12n-23+13n=18-25 | | t^2+10t+1000=0 | | (4x-5)-(2+3)=7x-6 | | x^2+50x+225=0 | | 2^2+50x+225=0 | | 14a-19a+10a=15a | | x*40=72 | | -3=14-7+9b | | 146x3+907.84x2-2400=0 |

Equations solver categories