If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+10n-112=0
We add all the numbers together, and all the variables
n^2+10n-112=0
a = 1; b = 10; c = -112;
Δ = b2-4ac
Δ = 102-4·1·(-112)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{137}}{2*1}=\frac{-10-2\sqrt{137}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{137}}{2*1}=\frac{-10+2\sqrt{137}}{2} $
| 2p-3p=7 | | -10=-6+x+9+x | | 2x=52-30 | | 2-8x=24x-10 | | 2*(6-x)=4x2*(6−x)=4x | | 2*(6-x)=4x2⋅(6−x)=4x | | 3a+4/12-5/3=2a-1/2 | | 7x3+3x2-3x+1=0 | | x^2-5x-2x(x+3)=121 | | x+x=4x+2x | | 3x+7=4-x | | 2x-10=65-x=180 | | 11(3x=5x)+4x-x | | 10a+3=17 | | X²+3x-28=0 | | 65=2x=3x-10 | | 5u-8=-18 | | 3x-10=2x=65 | | 51=3y-9 | | 6x+2=-4x+22 | | 5+1+4x=5 | | 4(x-2)2-10x=-40 | | -36=5v-6 | | 5x+5=-3+21 | | 0.07xX=100 | | 5x+5=-3x+22 | | 11=5(4x-3)-2(x-6) | | (7/x+1)=14 | | (5(1.2))x=400 | | 7/x+1=14 | | x-(0.24x)=725 | | (5x1.2)X=400 |