If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+12n-23=0
We add all the numbers together, and all the variables
n^2+12n-23=0
a = 1; b = 12; c = -23;
Δ = b2-4ac
Δ = 122-4·1·(-23)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{59}}{2*1}=\frac{-12-2\sqrt{59}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{59}}{2*1}=\frac{-12+2\sqrt{59}}{2} $
| 2/7x=84 | | 9-3x=2-4-2x | | 6-3(3x-1)=36 | | 1.50t^2-30.0t-30.0=0 | | 20+4x=28 | | -10(x-1)=10-10 | | 6x-(2x+4)=44 | | 32=12x-4 | | 4x(x-3)=8(x-1) | | 70=(2x-10)x | | 31x+7=131 | | 6x(x-1)=3x-2 | | v-15=27* | | 3v/7=12 | | 6x+9=( | | 100-4q=2q+4 | | 2x/8=1/20 | | 8/2x=20 | | 3t-13=-31+t | | 5(x+3)=9(x+1)-6 | | 3b=b+16 | | 8y-7=7+y | | -20y-50+20y=50 | | .3x-33=180 | | 7s-29=-5+s | | 9m2-30m+25=0 | | (4x+1)/5=2x+1 | | 4x+1/5=2x+1 | | 6+3.50x=20 | | 3x+9x=50 | | 3m+9=m-11 | | 3x9x=60 |